NORTH CAROLINA
INTERCONNECTION REQUEST APPLICATION FORM

Utility: ___

Designated Utility Contact: ___

E-Mail Address: ___

Mailing Address: ___

City: ___________________________ State: ___________ Zip: ___________

Telephone Number: ___

Fax: ___________________________

An Interconnection Request Application Form is considered complete when it provides all applicable and correct information required below.

Preamble and Instructions

An Interconnection Customer who requests a North Carolina Utilities Commission jurisdictional interconnection must submit this Interconnection Request Application Form by hand delivery, mail, e-mail, or fax to the Utility.

This Request is for:

- Fast Track Process _______ Supplemental Review _______
- Section 4 Study Process ______ Standby Generator / Closed Transition ______
- Change in Ownership ______

(Refer to Section 3 of the Interconnection Standards for guidance in selection Fast Track Review options. All Generating Facilities larger than 2 MW must use the Section 4 Study Process.)

Processing Fee or Deposit

Fast Track Process – Non-Refundable Processing Fees
- If the Generating Facility is larger than 20 kW but not larger than 100 kW, the fee is $750.
- If the Generating Facility is larger than 100 kW but not larger than 2 MW, the fee is $1,000.

Supplemental Review - Deposit
- If the Generating Facility is larger than 20 kW but not larger than 100 kW, the deposit is $750.
- If the Generating Facility is larger than 100 kW but not larger than 2 MW, the deposit is $1,000.

NC Interconnection Request Application Form
Section 4 Study Process – Deposit
If the Interconnection Request is submitted under the Section 4 Study Process, whether a new submission or an Interconnection Request that did not pass the Fast Track Process, the Interconnection Customer shall submit to the Utility an Interconnection Facilities Deposit of (1) $20,000 plus $1.00 per kWAC for all Interconnection Requests less than 20 MW; (2) $35,000 plus one dollar ($1.00) per kWac for all Interconnection Requests between 20 MW and 50 MW; and (3) $50,000 plus one dollar ($1.00) per kWac for all Interconnection Requests greater than 50 MW.

Standby Generator / Closed Transition - Deposit
- If the Facility is less than 1 MW, deposit is $2,500.
- If the Facility is equal to or greater than 1 MW the deposit is $5,000.

Change in Ownership – Non-Refundable Processing Fee
- If the Interconnection Request is submitted solely due to a transfer of ownership or change of control of the Generating Facility, the fee is $500.
Interconnection Customer Information

Legal Name of the Interconnection Customer (or, if an individual, individual’s name)

Legal Entity: ________________________________
Primary Contact Name: ________________________________
Title: ________________________________
E-Mail Address: ________________________________
Mailing Address: ________________________________
City: __________________ State: ___________ Zip: ___________
County: __________________
Telephone (Day): ________________ (Evening): ________________
Fax: __________________

Secondary Contact Name: ________________________________
Title: ________________________________
E-Mail Address: ________________________________
Mailing Address: ________________________________
City: __________________ State: ___________ Zip: ___________
County: __________________
Telephone (Day): ________________ (Evening): ________________
Fax: __________________

Facility Location (if different from above):

Project Name: ________________________________
Latitude: __________________ (decimal format, to at least 4 digits)
Longitude: __________________ (decimal format, to at least 4 digits)
Address: ________________________________
City: __________________ State: ___________ Zip: ___________
County: __________________

For installations at locations with existing electric service to which the proposed Generating Facility will interconnect, provide the Existing Account Number: ____________

Controlling Entity Information (business in charge of project, if different from the Interconnection Customer):

- **Controlling Entity:**
- **Contact Name:**
- **Title:**
- **E-Mail Address:**
- **Mailing Address:**
- **City:**
- **State:**
- **Zip:**
- **Telephone (Day):**
- **Telephone (Evening):**
- **Fax:**

Application is for:

- [] New Generating Facility
- [] Capacity Change to a Proposed or Existing Generating Facility
- [] Change of Ownership of a Proposed or Existing Generating Facility to a new legal entity
- [] Change of Control of a Proposed or Existing Generating Facility of the existing legal entity.
- [] Equipment Substitution
- [] Other

Please provide additional information regarding the proposed change(s):

Will the Generating Facility be used for any of the following?

- **Net Metering?** Yes [] No []
- **To Supply Power to the Interconnection Customer?** Yes [] No []
- **To Supply Power to the Utility?** Yes [] No []
- **To Supply Power to Others?** Yes [] No []

(If yes, discuss with the Utility whether the interconnection is covered by the NC Interconnection Standard.)
Is the Generating Facility owned by the Interconnection Customer or Leased from an Electric Generator Lessor in North Carolina?

Owned ______
Leased ______

NCUC Docket No.: __

Requested Point of Interconnection: __

Requested In-Service Date: ___

Requested Commercial Operation Date: _______________________________________

For installations at locations with existing electric service to which the proposed Generating Facility will interconnect, provide:

Local Electric Service Provider: ___

Existing Account Number: __

To be provided by the Interconnection Customer if the local electric service provider is different from the Utility:

Contact Name: ___

Title: __

E-Mail Address: ___

Mailing Address: __

City: __________________________ State: _________ Zip: __________

County: _________________________

Telephone (Day): ________________ (Evening): _____________________________

Fax: ___________________________

Generating Facility Information
Data applies only to the Generating Facility, not the Interconnection Facilities.
Prime Mover Information (Refer to U.S. EIOA Form 860 Instructions, Table 2 Prime Mover Codes and Descriptions at:

https://www.eia.gov/survey/form/eia_860/instructions.pdf)

Prime Mover Code ________________

Prime Mover Description: __

Energy Source Information (Refer to U.S. EIA Form 860 Instructions, Table 28 Energy Source Codes and Heat Content at:
https://www.eia.gov/survey/form/eia_860/instructions.pdf)

NC Interconnection Request Application Form
Type of Generator: Synchronous ☐ Induction ☐ Inverter ☐

Total Generator/ Storage Nameplate Capacity: _____ kWAC (Typical) ________ kVAR

Storage Nameplate Energy: ___________ kWh

Interconnection Customer or Customer-Site Load: ______________ kWAC (if none, so state)

Interconnection Customer Generator Auxiliary Load: ______________ kWAC

Typical Reactive Load (if known): ______________ kVAR

Maximum Generating Capacity Requested: ______________ kWAC
(The maximum continuous electrical output of the Generating Facility at any time at a power factor of approximately unity as measured at the Point of Interconnection and the maximum kW delivered to the Utility during any metering period)

Production profile: Provide below the maximum import and export levels (as a percentage of the Maximum Generating Capacity Requested) for each hour of the day, as measured at the Point of Interconnection. Power flow in excess of these levels during the corresponding hour shall be considered an Adverse Operating Effect per section 3.4.4. of the Interconnection Agreement.

Maximum import and export, hour ending:

| | | % | | | % | | | % | | | % | | | % |
|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-----|
| 0100 | imp: | exp:| % | 0200 | imp: | exp:| % | 0300 | imp: | exp:| % |
| 0400 | imp: | exp:| % | 0500 | imp: | exp:| % | 0600 | imp: | exp:| % |
| 0700 | imp: | exp:| % | 0800 | imp: | exp:| % | 0900 | imp: | exp:| % |
| 1000 | imp: | exp:| % | 1100 | imp: | exp:| % | 1200 | imp: | exp:| % |
| 1300 | imp: | exp:| % | 1400 | imp: | exp:| % | 1500 | imp: | exp:| % |
| 1600 | imp: | exp:| % | 1700 | imp: | exp:| % | 1800 | imp: | exp:| % |
| 1900 | imp: | exp:| % | 2000 | imp: | exp:| % | 2100 | imp: | exp:| % |
| 2200 | imp: | exp:| % | 2300 | imp: | exp:| % | 2400 | imp: | exp:| % |
Please provide any additional pertinent information regarding the daily operating characteristics of the facility here or attached as noted. Also note information about intended reactive flows:

List components of the Generating Facility equipment package that are currently certified:

<table>
<thead>
<tr>
<th>Number</th>
<th>Equipment Type</th>
<th>Certifying Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Battery Information

Manufacturer, Model & Quantity (for each type):

AC/DC Coupled: ☐ AC ☐ DC

DC-DC Converter Model (if used):

Total Battery Capacity in kWAC: ____________________________

Total Battery Capacity in kWDC: ____________________________

Rated Battery Capacity in MWh: ____________________________

Hours to discharge at Max: __________ Max Ramp Rate MW/s: __________

Rated Discharging Power MW: _________ Rate to Charge: ______________

Rate to Discharge: _________________

Max Discharging Duration at Rate Power (hrs): __________________________

Battery Operation

Control Narrative (generally describe the intended operation and output characteristics used for programming the BESS controller – e.g. peak-load serving, flattening solar facility output, etc.): ____________________________

Modes of Operations (check all that apply):

☐ Continuous Charge ☐ Frequency Response ☐ Islanding ☐Dispatch

Reactive Capability Myar (provide curve if available): ____________________________

Rated Life Span (cycles): ____________________________

Please attach 8760 projections for total facility output with storage.
Generator (or solar panel information)

Inverter Manufacturer, Model & Quantity (for each type):

Other Equipment Manufacturer, Model & Quantity (for each type):

Nameplate Output Power Rating in kWAC: Summer _______ Winter _______

Nameplate Output Power Rating in kVA: Summer _______ Winter _______

Individual Generator Rated Power Factor: _______ Leading _______ Lagging

For wind projects provide the following information:

Total Number of Generators in wind farm to be interconnected pursuant to this Interconnection Request: _______________________________

Elevation: _______________________________

For solar projects provide the following information:

Orientation: _______ Degrees (Due South=180°)

☐ Fixed Tilt Array ☐ Single Axis Tracking Array ☐ Double Axis Tracking Array

Fixed Tilt Angle: _______ Degrees

For transmission-connected projects, provide completed PSS/E data sheets for the generic PV library model(s) and user written model.

Impedance Diagram - If interconnecting to the Utility System at a voltage of 44-kV or greater, provide an Impedance Diagram. An Impedance Diagram may be required by the Utility for proposed interconnections at lower interconnection voltages. The Impedance Diagram shall provide, or be accompanied by a list that shall provide, the collector system impedance of the generation plant. The collector system impedance data shall include equivalent impedances for all components, starting with the inverter transformer(s) up to the utility level Generator Step-Up transformer.

Collector System Impedances (For PV Plants)

Collector system voltage = ______ kV

For each line/cable section (different size or length) indicated in the one-line diagram, the following impedance data needs to be provided in an attached Excel spreadsheet.

Length = ______ feet

For Transmission-Connected Projects:
• R = _____ ohm or _____ pu on 100 MVA and collector kV base (positive sequence)
• X = _____ ohm or _____ pu on 100 MVA and collector kV base (positive sequence)
• C = _____ μF or B = _____ pu on 100 MVA and collector kV base (positive sequence)

Alternatively, check here if Customer wants Duke Energy to use typical values for collector system impedances: □

For Distribution-connected projects >=1MW:
• R1 = _____ ohms/mile (Positive Sequence Resistance)
• R0 = _____ ohms/mile (Zero Sequence Resistance)
• X1 = _____ ohms/mile (Positive Sequence Inductive Reactance)
• X0 = _____ ohms/mile (Zero Sequence Inductive Reactance)
• B1 = _____ μS/mile (Positive Sequence Capacitive Susceptance)
• B0 = _____ μS/mile (Zero Sequence Capacitive Susceptance)

Interconnection Transmission Line (For Transmission Projects Only)
(from station transformer to POI)
• Line Voltage = ______kV
• Length = _____ feet
• R = ______ohm or ______ pu on 100 MVA and line kV base (positive sequence)
• X = ______ohm or ______ pu on 100 MVA and line kV base (positive sequence)
• C = ______ μF or B = ______ pu on 100 MVA and line kV base (positive sequence)

Load Flow Data Sheet - If interconnecting to the Utility System at a voltage of 44-kV or greater, provide a completed Power Systems Load Flow data sheet. A Load Flow data sheet may be required by the Utility for proposed interconnections at lower interconnection voltages.

Excitation and Governor System Data for Synchronous Generators - If interconnecting to the Utility System at a voltage of 44-kV or greater, provide appropriate IEEE model block diagram of excitation system, governor system and power system stabilizer (PSS) in accordance with the regional reliability council criteria. A PSS may be required at lower interconnection voltages. A copy of the manufacturer’s block diagram may not be substituted.
Generating Facility Characteristic Data (for inverter-based machines)
Max design fault contribution current: _______ Instantaneous □ RMS □
Harmonics Characteristics:

Start-up requirements:

Inverter Short-Circuit Model Data
Model and parameter data required for short-circuit analysis is specific to each PV inverter make and model. All data to be provided in per-unit ohms, on the equivalent inverter MVA base.
Inverter Equivalent MVA Base: _____________ MVA

Values below are valid for initial 2 to 6 cycles:

Short-Circuit Equivalent Zero Seq. Resistance (R0): _______ p.u.
Short-Circuit Equivalent Zero Seq. Reactance (XL0): _______ p.u.

Special notes regarding short-circuit modeling assumptions:

Plant Reactive Power Compensation
Describe which devices (e.g. inverters, capacitors, SVC) will supply reactive power (Mvar) to allow the plant to meet the power factor requirement at the Point of Interconnection (transmission HV bus) when the plant is simultaneously injecting full requested MW. All reactive power compensation devices must be automatically controlled.

In addition to the inverters, if a plant reactive power compensation device is part of the plant design, the following data needs to be provided:

Shunt capacitors: _____ (count), _____ Mvar each, _______ Mvar total

Shunt reactors: _____ (count), _____ Mvar each, _______ Mvar total

Dynamic reactive control device type, (SVC, STATCOM): ____________________
• Control range ___________ Mvar (capacitive), __________ Mvar (inductive)
• Control mode (e.g., voltage, power factor, reactive power): _____________
• Regulation set point ______________________ (kV, power factor, or Mvar)
• Describe the overall reactive power control strategy: ________________
• Completed PSS/E data sheets and model for the dynamic reactive control device need to be provided.

Generating Facility Characteristic Data (for rotating machines)
RPM Frequency: ____________
(*) Neutral Grounding Resistor (if applicable): ____________

Synchronous Generators:
Direct Axis Synchronous Reactance, Xd: ___________ P.U.
Direct Axis Transient Reactance, X’d: ___________ P.U.
Direct Axis Subtransient Reactance, X”d: ___________ P.U.
Negative Sequence Reactance, X2: ___________ P.U.
Zero Sequence Reactance, X0: ___________ P.U.
KVA Base: ____________
Field Volts: ____________
Field Amperes: ____________

Induction Generators:
Motoring Power (kW): ____________
I^2t or K (Heating Time Constant): ____________
Rotor Resistance, Rr: ____________
Stator Resistance, Rs: ____________
Stator Reactance, Xs: ____________
Rotor Reactance, Xr: ____________
Magnetizing Reactance, Xm: ____________
Short Circuit Reactance, Xd": ____________
Exciting Current: ____________
Temperature Rise: ____________
Frame Size: ____________
Design Letter: ____________
Reactive Power Required In Vars (No Load): ____________
Reactive Power Required In Vars (Full Load): ____________
Total Rotating Inertia, H: __________ Per Unit on kVA Base

Note: Please contact the Utility prior to submitting the Interconnection Request to determine if the specified information above is required.
Interconnection Facilities Information

Will more than one transformer be used between the generator and the point of common coupling? ☐ Yes ☐ No

(If yes, copy this section and provide the information for each transformer used. This information must match the single-line drawing and transformer specification sheets. For identical transformers, one set of data may be provided.)

Will the transformer be provided by the Interconnection Customer? ☐ Yes ☐ No

Transformer Data (if applicable, for Interconnection Customer-owned transformer):

Is the transformer: Single phase ☐ Three phase ☐ Size: _________ kVA

If Two Winding:

a) Rating (ONAN/ONAF/ONAF): _____ / _____ / _____ MVA

b) Nominal Voltage for each winding (High/Low): _____ / _____ kV

c) Winding Connections (High/Low): [Delta or Wye](grounded) or Wye(ungrounded) / [Delta or Wye](grounded) or Wye(ungrounded)]

* Transmission: High side should be delta for tap station or wye for switching station with network breakers.

Distribution: High side should be wye-grounded.

d) Available tap positions: _____ / _____ / _____ / _____ / _____ kV or _____ % _____ # of taps.

e) Positive sequence impedance Z_1: _____ %, _____ X/R on self-cooled (ONAN) MVA rating above.

f) Zero sequence impedance Z_0: _____ %, _____ X/R on self-cooled (ONAN) MVA rating above.

g) For pad mounted transformer, construction: 3 / 4 / 5 -legged

For Distribution-connected sites >=1MW for each xfrmr in SLD please include:

a) Eddy Current (No Load) Losses (kW):_____

b) Copper Losses at Full Rated Load (kW):_____

c) Magnetizing (No Load) Current at 100% Voltage (% nominal Current):_____

d) Knee Voltage (% nominal Voltage):_____

e) Air-Core Reactance
 o Ohms:_____
o per unit:_____(on transformer ONAN MVA base and nominal primary voltage)
f) Manufacturer Estimated Maximum RMS Inrush Current (Primary Side Amps):_______

If Three Winding:
Please attach diagram and mark to reference this form)

<table>
<thead>
<tr>
<th></th>
<th>H Winding Data</th>
<th>X Winding Data</th>
<th>Y Winding Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load ratings</td>
<td>/ / / MVA</td>
<td>/ / / MVA</td>
<td>/ / / MVA</td>
</tr>
<tr>
<td>(i.e. ONAN/ONAF/ONAF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated voltage base</td>
<td>_____ kV</td>
<td>_____ kV</td>
<td>_____ kV</td>
</tr>
<tr>
<td>Delta or Wye</td>
<td>connected</td>
<td>connected</td>
<td>connected</td>
</tr>
<tr>
<td>Tap positions</td>
<td>/ / / kV</td>
<td>/ / / kV</td>
<td>/ / / kV</td>
</tr>
<tr>
<td>available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Tap Setting</td>
<td>_____ kV</td>
<td>_____ kV</td>
<td>_____ kV</td>
</tr>
<tr>
<td>(if applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral solidly</td>
<td>_____ Ohms</td>
<td>_____ Ohms</td>
<td>_____ Ohms</td>
</tr>
<tr>
<td>grounded? (or)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral Grounding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistor (if</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIL rating</td>
<td>_____ kV</td>
<td>_____ kV</td>
<td>_____ kV</td>
</tr>
</tbody>
</table>

Three Winding Impedance Data:
Please attach diagram and mark to reference this form)

<table>
<thead>
<tr>
<th></th>
<th>H-X Winding Data</th>
<th>H-Y Winding Data</th>
<th>X-Y Winding Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer base for</td>
<td>_____ MVA</td>
<td>_____ MVA</td>
<td>_____ MVA</td>
</tr>
<tr>
<td>impedances provided</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive sequence</td>
<td>_____ % X/R</td>
<td>_____ % X/R</td>
<td>_____ % X/R</td>
</tr>
<tr>
<td>impedance Z₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero sequence</td>
<td>_____ % X/R</td>
<td>_____ % X/R</td>
<td>_____ % X/R</td>
</tr>
<tr>
<td>impedance Z₀</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transformer Fuse Data (if applicable, for Interconnection Customer-owned fuse):
(Attach copy of fuse manufacturer’s Minimum Melt and Total Clearing Time-Current Curves)

Manufacturer: _________________ Type: ___________ Size: _____ Speed: _______

Interconnecting Circuit Breaker (if applicable):

Manufacturer: ______________________________ Type: _______________________

Load Rating (Amps): ____ Interrupting Rating (Amps): __________

Trip Speed (Cycles): ________
Interconnection Protective Relays (if applicable):
If Microprocessor-Controlled:
List of Functions and Adjustable Setpoints for the protective equipment or software:

<table>
<thead>
<tr>
<th>Setpoint Function</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Discrete Components:
(Enclose Copy of any Proposed Time-Overcurrent Coordination Curves)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type:</th>
<th>Style/Catalog No.</th>
<th>Proposed Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Transformer Data (if applicable):
(Enclose Copy of Manufacturer’s Excitation and Ratio Correction Curves)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type:</th>
<th>Accuracy Class:</th>
<th>Proposed Ratio Connection:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential Transformer Data (if applicable):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type:</th>
<th>Accuracy Class:</th>
<th>Proposed Ratio Connection:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Information

1. **One-line diagram**
 Enclose site electrical one-line diagram showing the configuration of all Generating Facility equipment, current and potential circuits, and protection and control schemes.
 - The one-line diagram should include the project owner’s name, project name, project address, model numbers and nameplate sizes of equipment, including number and nameplate electrical size information for solar panels, inverters, wind turbines, disconnect switches, latitude and longitude of the project location, and tilt angle and orientation of the photovoltaic array for solar projects.
 - The diagram should also depict the metering arrangement required whether installed on the customer side of an existing meter (“net metering/billing”) or directly connected to the grid through a new or separate delivery point requiring a separate meter.
 - List of adjustable set points for the protective equipment or software should be included on the electrical one-line drawing.
 - This one-line diagram must be signed and stamped by a licensed Professional Engineer if the Generating Facility is larger than 50 kW.
 - Is One-Line Diagram Enclosed? Yes ___ No ___

2. **Site Plan**
 - Enclose copy of any site documentation that indicates the precise physical location of the proposed Generating Facility (Latitude & Longitude Coordinates and USGS topographic map, or other diagram) and the proposed Point of Interconnection.
 - Proposed location of protective interface equipment on property (include address if different from the Interconnection Customer’s address)
 - Is Site Plan Enclosed? Yes ___ No ___

3. **Is Site Control Verification Form Enclosed? Yes ___ No ___

4. **Equipment Specifications**
 Include equipment specification information (product literature) for the solar panels and inverter(s) that provides technical information and certification information for the equipment to be installed with the application.
 - Are Equipment Specifications Enclosed? Yes ___ No ___

5. **Protection and Control Schemes**
 - Enclose copy of any site documentation that describes and details the operation of the protection and control schemes.
 - Is Available Documentation Enclosed? Yes ___ No ___
 - Enclose copies of schematic drawings for all protection and control circuits, relay current circuits, relay potential circuits, and alarm/monitoring circuits (if applicable).
 - Are Schematic Drawings Enclosed? Yes ___ No ___

6. **Register with North Carolina Secretary of State** (if not an individual)
Applicant Signature
I hereby certify that, to the best of my knowledge, all the information provided in this Interconnection Request Application Form is true and correct.

For Interconnection Customer:
Signature __________________________ Date: __________________________
(Authorized Agent of the Legal Entity)

Print Full Name ___
Company Name ___
Title With Company __
E-Mail Address ___
Mailing Address: __
City: __________________________ State: __________________________ Zip: __________________________
County: __________________________
Telephone (Day): __________________________ (Evening): __________________________
Fax: __________________________
In the Matter of the Application of
[Developer Name] for an
Interconnection Agreement
with [Utility Name]

I, [Authorized Signatory Name], [Title] of [Developer Name], under penalty of perjury, hereby certify that, [Developer Name] or its affiliate has executed a written contract with the landowner(s) noted below, concerning the property described below. I further certify that our written contract with the landowner(s) specifies the agreed rental rate or purchase price for the property, as applicable, and allows [Developer Name] or its affiliates to construct and operate a renewable energy power generation facility on the property described below.

This verification is provided to [Utility Name] in support of our application for an Interconnection Agreement.

Landowner Name(s):

Land Owner Contact information (Phone or e-mail):

Parcel or PIN Number: ____________________________

County: _____________________

Site Address:___

Number of Acres under Contract (state range, if applicable): _____________________

Date Contract was executed ______________________________

Term of Contract ___________________________

[signature]

[Authorized Signatory Name]

[Authorized Signatory Name], being first duly sworn, says that [he/she] has read the foregoing verification, and knows the contents thereof to be true to [his/her] actual knowledge.

Sworn and subscribed to before me this ________ day of __________________, 20___.

[signature]

[Authorized Signatory Name]

[Title], [Developer Name]

[Signature of Notary Public]

Notary Public

Name of Notary Public [typewritten or printed]

My Commission expires: _____________________